The Rrp4-exosome complex recruits and channels substrate RNA by a unique mechanism
نویسندگان
چکیده
The exosome is a large molecular machine involved in RNA degradation and processing. Here we address how the trimeric Rrp4 cap enhances the activity of the archaeal enzyme complex. Using methyl-TROSY NMR methods we identified a 50-Å long RNA binding path on each Rrp4 protomer. We show that the Rrp4 cap can thus simultaneously recruit three substrates, one of which is degraded in the core while the others are positioned for subsequent degradation rounds. The local interaction energy between the substrate and the Rrp4-exosome increases from the periphery of the complex toward the active sites. Notably, the intrinsic interaction strength between the cap and the substrate is weakened as soon as substrates enter the catalytic barrel, which provides a means to reduce friction during substrate movements toward the active sites. Our data thus reveal a sophisticated exosome-substrate interaction mechanism that enables efficient RNA degradation.
منابع مشابه
Quantitative analysis of processive RNA degradation by the archaeal RNA exosome
RNA exosomes are large multisubunit assemblies involved in controlled RNA processing. The archaeal exosome possesses a heterohexameric processing chamber with three RNase-PH-like active sites, capped by Rrp4- or Csl4-type subunits containing RNA-binding domains. RNA degradation by RNA exosomes has not been studied in a quantitative manner because of the complex kinetics involved, and exosome fe...
متن کاملThe archaeal DnaG protein needs Csl4 for binding to the exosome and enhances its interaction with adenine-rich RNAs
The archaeal RNA-degrading exosome contains a catalytically active hexameric core, an RNA-binding cap formed by Rrp4 and Csl4 and the protein annotated as DnaG (bacterial type primase) with so-far-unknown functions in RNA metabolism. We found that the archaeal DnaG binds to the Csl4-exosome but not to the Rrp4-exosome of Sulfolobus solfataricus. In vitro assays revealed that DnaG is a poly(A)-b...
متن کاملRNA channelling by the archaeal exosome.
Exosomes are complexes containing 3' --> 5' exoribonucleases that have important roles in processing, decay and quality control of various RNA molecules. Archaeal exosomes consist of a hexameric core of three active RNase PH subunits (ribosomal RNA processing factor (Rrp)41) and three inactive RNase PH subunits (Rrp42). A trimeric ring of subunits with putative RNA-binding domains (Rrp4/cep1 sy...
متن کاملArchaeal DnaG contains a conserved N-terminal RNA-binding domain and enables tailing of rRNA by the exosome
The archaeal exosome is a phosphorolytic 3'-5' exoribonuclease complex. In a reverse reaction it synthesizes A-rich RNA tails. Its RNA-binding cap comprises the eukaryotic orthologs Rrp4 and Csl4, and an archaea-specific subunit annotated as DnaG. In Sulfolobus solfataricus DnaG and Rrp4 but not Csl4 show preference for poly(rA). Archaeal DnaG contains N- and C-terminal domains (NTD and CTD) of...
متن کاملStructural characterization of yeast exosome using SAXS
The exosome is a large protein complex conserved in all eukaryotes that possesses 3’-5’ exoribonuclease activity [1]. It is playing a major role in RNA turnover and surveillance as well as processing of stable RNA species [2,3,1,4,5]. The exosome is composed of six distinct subunits homologous to the catalytic domains of ring shaped phosphorolytic bacterial RNase PH and PNPase (Rrp41, Rrp42, Rr...
متن کامل